China supplier 5t 9m Single Girder Compact Lifting Equipment Electric Wire Rope Hoist European Model for Lifting

Product Description

Product Description

European type hoist’s body is welded by professional proximate matter,with exquisite structure, excellent appearance and unique innovations.They are suitable for various material transfer sites such as machining shops,assembly shops,warehouse and other material handling sites especially for sites where the height of workshop is limited.

Detail Features:
1) Lifting Motor
Ip55 protecting level, F level insulation
High efficiency double speed lifting motor, ratio 6:1
60% ED, strong power and sufficient stock
With thermal protecting function to prevent from over temperature
Sturdy and durable aluminum alloy motor, light weight, good heat dissipation
High-tech totally enclosed aluminum alloy gearbox
Quenched and fine ground gear makes motor stable and low noise
Free maintenance design:no need to change lubrication oil in lifetime
DC brake, quick response
The safety factor of brake is higher than 180%, manual release for optional
With self-adjust function
More than 1 million times brake operation

2) Traveling Motor
Motor ,gearbox and brake three-in-1
Compact structure ,small size and light weight
Direct drive flexible design, stable torque transfer
30% rotational efficiency higher than traditional coupling
Suitable for frequency reverse switching
Squirrel cage variable frequency motor 60% ED
IP55 protecting level, H level insulation
Safe and reliable DC brake
Aluminum alloy shell, hard tooth surface reducer, well sealing without oil leakage

3) Imported Wire Rope
High strength pressed CHINAMFG galvanized wire rope
2160N/mm² tensile strength
40% smaller than traditional wire rope
Good flexibility and long service life
Press rope block for special use, intensively layout to prevent form loose, fastening is more reliable
Fusible cutout rope technology,fusible surface is firm
Effectively prevent from loose to extend service life

4) Hook Assembly
Match to the standard of DIN15400/15401, forged by high strength alloy steel
With safety latch to protect safely
360° horizontal and 180° vertical rotations
High strength extrusion pulley, high finish rope groove to avoid friction with wire rope

5) Control System
Automatic orientation
Automatic centering
Automatic rectify deviation
Inch moving ,joggle
Anti-shock
Regional Protection
Electronic anti-sway
Remote communication, digital maintenance

6) Electric Unit
Stable and durable contactor control, reliably work in bad condition
Standard 3 phase voltage:380-415v,50hz(440-480v,60hz)
Standard control voltage:48v
Sturdy and durable control panel, IP54 protecting level

7) Rope Xihu (West Lake) Dis.r
High performance engineering material,light self-weight,sturdy and reliable
Circular design
Precise rope guide system

Single Girder European Type Wire Rope Hoist:

Load Capacity(M)

Lift Height

(M)

Lift Speed

(m/min)

Travelling Speed (m/min)

Lift Motor Power(KW)

Travel Motor Power (KW)

Rope Dia

(mm)

Group

(ISO)

Rope Reeving

3.2

6/9/12/15/18

5/0.8

20/5

3.2/0.45

2*0.37/0.1

7

M5

4/1

5

6/9/12/15/18

5/0.8

20/5

6.0/0.9

2*0.37/0.1

9

M5

4/1

6.3

6/9/12/15/18

5/0.8

20/5

6.0/0.9

2*0.37/0.1

9

M4

4/1

8

6/9/12/15/18

5/0.8

20/5

9.5/1.5

2*0.75/0.18

13

M6

4/1

10

6/9/12/15/18

5/0.8

20/5

9.5/1.5

2*0.75/0.18

13

M5

4/1

12.5

6/9/12/15/18

5/0.8

20/5

12.5/1.9

2*0.75/0.18

13

M4

4/1

Double Girder European Type Wire Rope Hoist:

Load Capacity(M)

Lift Height

(M)

Lift Speed

(m/min)

Travelling Speed (m/min)

Lift Motor Power(KW)

Travel Motor Power (KW)

Rope Dia

(mm)

Group

(ISO)

Rope Reeving

5

6/9/12/15/18

5/0.8

20/5

6.0/0.9

2*0.37

11

M5

4/1

10

6/9/12/15/18

5/0.8

20/5

9.5/1.5

2*0.55

15

M5

4/1

12.5

6/9/12/15/18

5/0.8

20/5

12.5/1.9

2*0.55

15

M4

4/1

16

6/9/12/15/18

4/0.6

20/5

16/2.6

2*1.1

18

M5

4/1

20

6/9/12/15/18

4/0.6

20/5

16/2.6

2*1.1

18

M4

4/1

20

6/9/12/15/18

3.4/0.5

20/5

16/2.6

2*1.1

18

M5

4/1

25

6/9/12/15/18

3.4/0.5

20/5

16/2.6

2*1.1

18

M4

4/1

40

6/9/12/15/18

4.9/0.8

20/5

38

2*1.5

20

M4

4/1

63

6/9/12/15/18

3.3/0.5

20/5

38

2*2.2

20

M4

4/1

Compared with the traditional electric wire rope hoist, European type electric wire rope hoist is a newly developed hoist with advanced design technology according to the FEM standards and other regulations The new serial of wire rope electric hoist is environment-friendly, energy saving and cost-effective which ranks top among similar products.

Advantages:1. Optimized design with FEM standard, with light and beautiful appearence.
2. Safe and efficient to operate, and meet current requirements of low noise and environmental protection.
3. Equipped with intelligent safe operation monitoring system which can uninterruptedly record working status and prevent unprofessional operations. And controller will perform a self-test before starting, including the power supply voltage level,default phase, button zero status and validity of each safety device.
4. Imported Motors, aluminum alloy drawing molding with excellent heat dissipation, and overheated protection and alarm function.
5. Maintenance-free design of whole body and less wearing parts make it convenient to maintain.

Packaging & Shipping

About Us

FAQ

Q1: What are you? Trade Company or manufacturer?

We are both manufacturer & trading company

 

Q2: What’s the advantage of your company?

We’ve experienced manufacturer and overseas dealer. Our products have been exported to over 110 countries.

 An independent research team especially focusing on crane and hoist design upgrade. A professional service 

team for customers will provide feedback within 24 hours.

 

Q3: What’s the sample & MOQ to your company?

Sample order MOQ can be 1 set and the product you ordered will be sent in a week as long as inventory is available.

 

Q4: Can I customize the product according to my own willing?

Yes, OEM/ODM  are available, we can customize as customer’s request. 

 

Q5: How is the package during transportation?

Composite wooden crate for the electrical parts, waterproof cloth for the steel structure, then packed in a metal crate. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 12 Months
Warranty: 12 Months
Application: Double Beam Crane, Gantry Crane, Bridge Crane, Tower Crane, Single Grinder Crane, Lifting Platform, Small Crane
Type: Electric Hoist
Sling Type: Wire Rope
Lift Speed: >8m/min
Customization:
Available

|

Can injection molded parts be customized or modified to meet unique industrial needs?

Yes, injection molded parts can be customized or modified to meet unique industrial needs. The injection molding process offers flexibility and versatility, allowing for the production of highly customized parts with specific design requirements. Here’s a detailed explanation of how injection molded parts can be customized or modified:

Design Customization:

The design of an injection molded part can be tailored to meet unique industrial needs. Design customization involves modifying the part’s geometry, features, and dimensions to achieve specific functional requirements. This can include adding or removing features, changing wall thicknesses, incorporating undercuts or threads, and optimizing the part for assembly or integration with other components. Computer-aided design (CAD) tools and engineering expertise are used to create custom designs that address the specific industrial needs.

Material Selection:

The choice of material for injection molded parts can be customized based on the unique industrial requirements. Different materials possess distinct properties, such as strength, stiffness, chemical resistance, and thermal stability. By selecting the most suitable material, the performance and functionality of the part can be optimized for the specific application. Material customization ensures that the injection molded part can withstand the environmental conditions, operational stresses, and chemical exposures associated with the industrial application.

Surface Finishes:

The surface finish of injection molded parts can be customized to meet specific industrial needs. Surface finishes can range from smooth and polished to textured or patterned, depending on the desired aesthetic appeal, functional requirements, or ease of grip. Custom surface finishes can enhance the part’s appearance, provide additional protection against wear or corrosion, or enable specific interactions with other components or equipment.

Color and Appearance:

Injection molded parts can be customized in terms of color and appearance. Colorants can be added to the material during the molding process to achieve specific shades or color combinations. This customization option is particularly useful when branding, product differentiation, or visual identification is required. Additionally, surface textures, patterns, or special effects can be incorporated into the mold design to create unique appearances or visual effects.

Secondary Operations:

Injection molded parts can undergo secondary operations to further customize or modify them according to unique industrial needs. These secondary operations can include post-molding processes such as machining, drilling, tapping, welding, heat treating, or applying coatings. These operations enable the addition of specific features or functionalities that may not be achievable through the injection molding process alone. Secondary operations provide flexibility for customization and allow for the integration of injection molded parts into complex assemblies or systems.

Tooling Modifications:

If modifications or adjustments are required for an existing injection molded part, the tooling can be modified or reconfigured to accommodate the changes. Tooling modifications can involve altering the mold design, cavity inserts, gating systems, or cooling channels. This allows for the production of modified parts without the need for creating an entirely new mold. Tooling modifications provide cost-effective options for customizing or adapting injection molded parts to meet evolving industrial needs.

Prototyping and Iterative Development:

Injection molding enables the rapid prototyping and iterative development of parts. By using 3D printing or soft tooling, prototype molds can be created to produce small quantities of custom parts for testing, validation, and refinement. This iterative development process allows for modifications and improvements to be made based on real-world feedback, ensuring that the final injection molded parts meet the unique industrial needs effectively.

Overall, injection molded parts can be customized or modified to meet unique industrial needs through design customization, material selection, surface finishes, color and appearance options, secondary operations, tooling modifications, and iterative development. The flexibility and versatility of the injection molding process make it a valuable manufacturing method for creating highly customized parts that address specific industrial requirements.

How do innovations and advancements in injection molding technology influence part design and production?

Innovations and advancements in injection molding technology have a significant influence on part design and production. These advancements introduce new capabilities, enhance process efficiency, improve part quality, and expand the range of applications for injection molded parts. Here’s a detailed explanation of how innovations and advancements in injection molding technology influence part design and production:

Design Freedom:

Advancements in injection molding technology have expanded the design freedom for part designers. With the introduction of advanced software tools, such as computer-aided design (CAD) and simulation software, designers can create complex geometries, intricate features, and highly optimized designs. The use of 3D modeling and simulation allows for the identification and resolution of potential design issues before manufacturing. This design freedom enables the production of innovative and highly functional parts that were previously challenging or impossible to manufacture using conventional techniques.

Improved Precision and Accuracy:

Innovations in injection molding technology have led to improved precision and accuracy in part production. High-precision molds, advanced control systems, and closed-loop feedback mechanisms ensure precise control over the molding process variables, such as temperature, pressure, and cooling. This level of control results in parts with tight tolerances, consistent dimensions, and improved surface finishes. Enhanced precision and accuracy enable the production of parts that meet strict quality requirements, fit seamlessly with other components, and perform reliably in their intended applications.

Material Advancements:

The development of new materials and material combinations specifically formulated for injection molding has expanded the range of properties available to part designers. Innovations in materials include high-performance engineering thermoplastics, bio-based polymers, reinforced composites, and specialty materials with unique properties. These advancements allow for the production of parts with enhanced mechanical strength, improved chemical resistance, superior heat resistance, and customized performance characteristics. Material advancements in injection molding technology enable the creation of parts that can withstand demanding operating conditions and meet the specific requirements of various industries.

Process Efficiency:

Innovations in injection molding technology have introduced process optimizations that improve efficiency and productivity. Advanced automation, robotics, and real-time monitoring systems enable faster cycle times, reduced scrap rates, and increased production throughput. Additionally, innovations like multi-cavity molds, hot-runner systems, and micro-injection molding techniques improve material utilization and reduce production costs. Increased process efficiency allows for the economical production of high-quality parts in larger quantities, meeting the demands of industries that require high-volume production.

Overmolding and Multi-Material Molding:

Advancements in injection molding technology have enabled the integration of multiple materials or components into a single part through overmolding or multi-material molding processes. Overmolding allows for the encapsulation of inserts, such as metal components or electronics, with a thermoplastic material in a single molding cycle. This enables the creation of parts with improved functionality, enhanced aesthetics, and simplified assembly. Multi-material molding techniques, such as co-injection molding or sequential injection molding, enable the production of parts with multiple colors, varying material properties, or complex material combinations. These capabilities expand the design possibilities and allow for the creation of innovative parts with unique features and performance characteristics.

Additive Manufacturing Integration:

The integration of additive manufacturing, commonly known as 3D printing, with injection molding technology has opened up new possibilities for part design and production. Additive manufacturing can be used to create complex mold geometries, conformal cooling channels, or custom inserts, which enhance part quality, reduce cycle times, and improve part performance. By combining additive manufacturing and injection molding, designers can explore new design concepts, produce rapid prototypes, and efficiently manufacture customized or low-volume production runs.

Sustainability and Eco-Friendly Solutions:

Advancements in injection molding technology have also focused on sustainability and eco-friendly solutions. This includes the development of biodegradable and compostable materials, recycling technologies for post-consumer and post-industrial waste, and energy-efficient molding processes. These advancements enable the production of environmentally friendly parts that contribute to reducing the carbon footprint and meeting sustainability goals.

Overall, innovations and advancements in injection molding technology have revolutionized part design and production. They have expanded design possibilities, improved precision and accuracy, introduced new materials, enhanced process efficiency, enabled overmolding and multi-material molding, integrated additive manufacturing, and promoted sustainability. These advancements empower part designers and manufacturers to create highly functional, complex, and customized parts that meet the demands of various industries and contribute to overall process efficiency and sustainability.

What are injection molded parts, and how are they manufactured?

Injection molded parts are components or products that are produced through the injection molding manufacturing process. Injection molding is a widely used manufacturing technique for creating plastic parts with high precision, complexity, and efficiency. Here’s a detailed explanation of injection molded parts and the process of manufacturing them:

Injection Molding Process:

The injection molding process involves the following steps:

1. Mold Design:

The first step in manufacturing injection molded parts is designing the mold. The mold is a custom-made tool that defines the shape and features of the final part. It is typically made from steel or aluminum and consists of two halves: the cavity and the core. The mold design takes into account factors such as part geometry, material selection, cooling requirements, and ejection mechanism.

2. Material Selection:

The next step is selecting the appropriate material for the injection molding process. Thermoplastic polymers are commonly used due to their ability to melt and solidify repeatedly without significant degradation. The material choice depends on the desired properties of the final part, such as strength, flexibility, transparency, or chemical resistance.

3. Melting and Injection:

In the injection molding machine, the selected thermoplastic material is melted and brought to a molten state. The molten material, called the melt, is then injected into the mold under high pressure. The injection is performed through a nozzle and a runner system that delivers the molten material to the mold cavity.

4. Cooling:

After the molten material is injected into the mold, it begins to cool and solidify. Cooling is a critical phase of the injection molding process as it determines the final part’s dimensional accuracy, strength, and other properties. The mold is designed with cooling channels or inserts to facilitate the efficient and uniform cooling of the part. Cooling time can vary depending on factors such as part thickness, material properties, and mold design.

5. Mold Opening and Ejection:

Once the injected material has sufficiently cooled and solidified, the mold opens, separating the two halves. Ejector pins or other mechanisms are used to push or release the part from the mold cavity. The ejection system must be carefully designed to avoid damaging the part during the ejection process.

6. Finishing:

After ejection, the injection molded part may undergo additional finishing processes, such as trimming excess material, removing sprues or runners, and applying surface treatments or textures. These processes help achieve the desired final appearance and functionality of the part.

Advantages of Injection Molded Parts:

Injection molded parts offer several advantages:

1. High Precision and Complexity:

Injection molding allows for the creation of parts with high precision and intricate details. The molds can produce complex shapes, fine features, and precise dimensions, enabling the manufacturing of parts with tight tolerances.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the mold is created, the manufacturing process can be automated, resulting in fast and cost-effective production of identical parts. The high production volumes help reduce per-unit costs.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, allowing for versatility in material selection based on the desired characteristics of the final part. Different materials can be used to achieve specific properties such as strength, flexibility, heat resistance, or chemical resistance.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. The molding process ensures that the material is uniformly distributed, resulting in consistent mechanical properties throughout the part. This makes injection molded parts suitable for various applications that require structural integrity and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations, saving time and costs.

6. Design Flexibility:

With injection molding, designers have significant flexibility in part design. The process can accommodate complex geometries, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. This flexibility allows for innovation and optimization of part functionality.

In summary, injection molded parts are components or products manufactured through the injection molding process. This process involves designing amold, selecting the appropriate material, melting and injecting the material into the mold, cooling and solidifying the part, opening the mold and ejecting the part, and applying finishing processes as necessary. Injection molded parts offer advantages such as high precision, complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing, and design flexibility. These factors contribute to the widespread use of injection molding in various industries for producing high-quality plastic parts.

China supplier 5t 9m Single Girder Compact Lifting Equipment Electric Wire Rope Hoist European Model for Lifting  China supplier 5t 9m Single Girder Compact Lifting Equipment Electric Wire Rope Hoist European Model for Lifting
editor by Dream 2024-04-30

Tags:

Recent Posts