China wholesaler Eruo 2 10L Diesel Engine CHINAMFG CHINAMFG 10ton Cargo Truck with 4tons Fold Arm Crane

Product Description

***Eruo 2 10L Diesel Engine CHINAMFG CHINAMFG 10ton Cargo Truck with 4Tons Fold Arm Crane *** 

ZheJiang CHINAMFG VEHICLE CO.,LTD
Products–100% First Class!
Transportation–100% Convenience, Efficient!
Services–24hours service!

———————————————————————————

» I. Product Describution: 
 

Truck mounted crane is also called truck crane, crane truck, truck with lifting crane, loader cranes, hiab crane truck and etc. It can be equipped with different truck chassis and different loading capacities of cranes .The truck mounted crane is mainly used in stations, warehouses, docks, construction sites, field rescue and other places for transporation and lifting.

It’s a cargo lorry truck with hiab crane,which could be  telescopic boom crane or foldable boom crane.

FEATURE:

Pre Sale Service: 1. Technical Communication With Engineer                          
                               2. Factory and Workshop Visit.                          
                               3. Making Design Drawings according to customer request.

After Sale Service: 1. Customizing Installation & Commissioning
                                 2. Spare Parts Support
                                 3. Technical Support

Chassis: According to your request, choose various chassis and refit it to truck.,
                such as:I’SUZU,XIHU (WEST LAKE) DIS.FENG,SINOTRUCK,JAC,SHACMAN,FOTON,FAW …

Upper BodyCan supply only upper body without chassis according to your chassis drawing , design function parts like as below photos

Crane brand:  China various famous brand, Chengli, MT , CHINAMFG , S-ANY, or others

Customization: Communicate with engineer, making design drawings and produce customized products.

Spare Parts: Supply all kinds of spare parts on chassis and upper body, replace main parts on trucks as tank and box.

Warranty: From the date of receiving, in normal using within 30,000 km or within 1 year, we will repair for free,Technical support and commissioning are free always.

 

» II.Product Parameter:

 

4×2 4000kg Used cheap 4ton telescopic boom truck mounted crane
Chassis 
Main specification Chassis brand Xihu (West Lake) Dis.feng (HOWO/I-SUZU/Shacman etc in optional)
Overall dimension(L*W*H) 9900x2500x3800mm
Cargo body dimension 5000x2300x550mm
Chassis Drive modle 4×2  Left hand drive (Right Hand Drive in optional)
Wheel Base 4600mm +1400mm
Tyre size & number 11.00r20, 10pcs with 1 spare tyre
Axles 5Tons/ 10Tons x2
Transmission Manual type, 8F+2R
Frame Double layer 280
Engine  Cummins /Chaochai/Yuchai/Weichai
Engine horse power 170hp/190hp/210hp
Engine Emission standard Euro 3, diesel
Crane 
Crane Model 5-25 tons as need Max. lifting capacity 10 tons
Arm Number 3 telescopic arms Rotation Angle 360° all Rotation
Type of Crane Straight boom crane Max lifting altitude 14m
Rear Hydraulic Landing Legs Equipped Max working radius 5.5m

» III.Product Details:  

3.1. Optional choice for Crane truck 

3.2. Crane truck process and configuration:

Δ  Strengthened Cross-beam
Girder reinforced structure of secondary beam,
with strong carrying capacity.

Δ  Customized Cargo

Cargo size, material and appearance can be customized
as customer’s requirements.

Δ  Telescopic Boom
lifting capacity from 1ton to 25tons,
China various famous brand aviable.
Δ  Foldable boom
lifting capacity from 1ton to 30tons,
China various famous brand aviable.

Δ  Aerial Work Seat
Aerial operation, work vision is wider.
Δ  Front & Rear Hydraulic Outriggers
Double arms double cavity composite type hydraulic outriggers, more stable

IV. SHIPPING: RORO/BULK VESSEL/CONTAINER 

RORO: The truck is driven to the ship inside directly and fixed well. It can protect the truck being rusty and broken during shipping.

BULK: The truck is lifted by crane then put on the vessel deck. This model is much cheaper.

CONTAINER: The truck is put into the container. This model is used for small model trucks


V. ABOUT US

ZheJiang CHINAMFG VEHICLE CO.,LTD is an authorized special truck manufacturer which has many years in design ,product ,
sales and service in special trucks like as boom truck, fire truck, manlift truck, tank truck, garbage truck, tipper truck, wrecker 
truck, refrigerated truck, water truck, etc. 

Our main products:

Exporting
As Manufacturer, We Have Our Own License Of Import And Export.We Have Successfully Exported To Ghana, Sudan, Nigeria,
Angola ,Tajikistan, Namibia, Burma, Korea, Iran,American,Afghanistan,Iraq And Some Other Countries.The Development Of Our
Factory Is Getting Better And Better.

After Sales Service
Answer and solve your questions and consult within 24 hours
Overseas job site service available
One year guarantee about 3 key parts(axle, engine, transmission).Other spare parts could be supplied by cost price.
Other services:
1.All trucks and trailers are new and be customized to meet all your requirement.
2. All trucks and trailers are with 12 months quality guarantee.
3. CKD and SKD are available.
4. Technical support are provided.

FAQ
1.Our price term: FOB ZheJiang as common, other port is also acceptable.
2. Our Payment term: T/T, 30% deposit after order confirmation, 70% balance should be paid before delivery.
3. Delivery time: the delivery time is 20-30 days as common, the exact delivery time depends on the order and the current
    production condition.

If you are interested in our trucks, pls contact me, I will send our best quotation to you.

Contact person
Sale Manager: CHINAMFG Wang 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Offer After-Sales Service or Training
Warranty: One Year
Certification: ISO9001
Condition: New
Maximum Lifting Height: 10-15m
Maximum Lifting Weight: 8-10t
Customization:
Available

|

How does the injection molding process contribute to the production of high-precision parts?

The injection molding process is widely recognized for its ability to produce high-precision parts with consistent quality. Several factors contribute to the precision achieved through injection molding:

1. Tooling and Mold Design:

The design and construction of the injection mold play a crucial role in achieving high precision. The mold is typically made with precision machining techniques, ensuring accurate dimensions and tight tolerances. The mold design considers factors such as part shrinkage, cooling channels, gate location, and ejection mechanisms, all of which contribute to dimensional accuracy and part stability during the molding process.

2. Material Control:

Injection molding allows for precise control over the material used in the process. The molten plastic material is carefully measured and controlled, ensuring consistent material properties and reducing variations in the molded parts. This control over material parameters, such as melt temperature, viscosity, and fill rate, contributes to the production of high-precision parts with consistent dimensions and mechanical properties.

3. Injection Process Control:

The injection molding process involves injecting molten plastic into the mold cavity under high pressure. Advanced injection molding machines are equipped with precise control systems that regulate the injection speed, pressure, and time. These control systems ensure accurate and repeatable filling of the mold, minimizing variations in part dimensions and surface finish. The ability to finely tune and control these parameters contributes to the production of high-precision parts.

4. Cooling and Solidification:

Proper cooling and solidification of the injected plastic material are critical for achieving high precision. The cooling process is carefully controlled to ensure uniform cooling throughout the part and to minimize warping or distortion. Efficient cooling systems in the mold, such as cooling channels or conformal cooling, help maintain consistent temperatures and solidification rates, resulting in precise part dimensions and reduced internal stresses.

5. Automation and Robotics:

The use of automation and robotics in injection molding enhances precision and repeatability. Automated systems ensure consistent and precise handling of molds, inserts, and finished parts, reducing human errors and variations. Robots can perform tasks such as part removal, inspection, and assembly with high accuracy, contributing to the overall precision of the production process.

6. Process Monitoring and Quality Control:

Injection molding processes often incorporate advanced monitoring and quality control systems. These systems continuously monitor and analyze key process parameters, such as temperature, pressure, and cycle time, to detect any variations or deviations. Real-time feedback from these systems allows for adjustments and corrective actions, ensuring that the production remains within the desired tolerances and quality standards.

7. Post-Processing and Finishing:

After the injection molding process, post-processing and finishing techniques, such as trimming, deburring, and surface treatments, can further enhance the precision and aesthetics of the parts. These processes help remove any imperfections or excess material, ensuring that the final parts meet the specified dimensional and cosmetic requirements.

Collectively, the combination of precise tooling and mold design, material control, injection process control, cooling and solidification techniques, automation and robotics, process monitoring, and post-processing contribute to the production of high-precision parts through the injection molding process. The ability to consistently achieve tight tolerances, accurate dimensions, and excellent surface finish makes injection molding a preferred choice for applications that demand high precision.

Can you describe the various post-molding processes, such as assembly or secondary operations, for injection molded parts?

Post-molding processes play a crucial role in the production of injection molded parts. These processes include assembly and secondary operations that are performed after the initial molding stage. Here’s a detailed explanation of the various post-molding processes for injection molded parts:

1. Assembly:

Assembly involves joining multiple injection molded parts together to create a finished product or sub-assembly. The assembly process can include various techniques such as mechanical fastening (screws, clips, or snaps), adhesive bonding, ultrasonic welding, heat staking, or solvent welding. Assembly ensures that the individual molded parts are securely combined to achieve the desired functionality and structural integrity of the final product.

2. Surface Finishing:

Surface finishing processes are performed to enhance the appearance, texture, and functionality of injection molded parts. Common surface finishing techniques include painting, printing (such as pad printing or screen printing), hot stamping, laser etching, or applying specialized coatings. These processes can add decorative features, branding elements, or improve the surface properties of the parts, such as scratch resistance or UV protection.

3. Machining or Trimming:

In some cases, injection molded parts may require additional machining or trimming to achieve the desired final dimensions or remove excess material. This can involve processes such as CNC milling, drilling, reaming, or turning. Machining or trimming is often necessary when tight tolerances, specific geometries, or critical functional features cannot be achieved solely through the injection molding process.

4. Welding or Joining:

Welding or joining processes are used to fuse or bond injection molded parts together. Common welding techniques for plastic parts include ultrasonic welding, hot plate welding, vibration welding, or laser welding. These processes create strong and reliable joints between the molded parts, ensuring structural integrity and functionality in the final product.

5. Insertion of Inserts:

Insertion involves placing metal or plastic inserts into the mold cavity before the injection molding process. These inserts can provide additional strength, reinforce threaded connections, or serve as mounting points for other components. Inserts can be placed manually or using automated equipment, and they become permanently embedded in the molded parts during the molding process.

6. Overmolding or Two-Shot Molding:

Overmolding or two-shot molding processes allow for the creation of injection molded parts with multiple layers or materials. In overmolding, a second material is molded over a pre-existing substrate, providing enhanced functionality, aesthetics, or grip. Two-shot molding involves injecting two different materials into different sections of the mold to create a single part with multiple colors or materials. These processes enable the integration of multiple materials or components into a single injection molded part.

7. Deflashing or Deburring:

Deflashing or deburring processes involve removing excess flash or burrs that may be present on the molded parts after the injection molding process. Flash refers to the excess material that extends beyond the parting line of the mold, while burrs are small protrusions or rough edges caused by the mold features. Deflashing or deburring ensures that the molded parts have smooth edges and surfaces, improving their appearance, functionality, and safety.

8. Inspection and Quality Control:

Inspection and quality control processes are performed to ensure that the injection molded parts meet the required specifications and quality standards. This can involve visual inspection, dimensional measurement, functional testing, or other specialized testing methods. Inspection and quality control processes help identify any defects, inconsistencies, or deviations that may require rework or rejection of the parts, ensuring that only high-quality parts are used in the final product or assembly.

9. Packaging and Labeling:

Once the post-molding processes are complete, the injection molded parts are typically packaged and labeled for storage, transportation, or distribution. Packaging can include individual part packaging, bulk packaging, or custom packaging based on specific requirements. Labeling may involve adding product identification, barcodes, or instructions for proper handling or usage.

These post-molding processes are vital in achieving the desired functionality, appearance, and quality of injection molded parts. They enable the integration of multiple components, surface finishing, dimensional accuracy, and assembly of the final products or sub-assemblies.

Can you explain the advantages of using injection molding for producing parts?

Injection molding offers several advantages as a manufacturing process for producing parts. It is a widely used technique for creating plastic components with high precision, efficiency, and scalability. Here’s a detailed explanation of the advantages of using injection molding:

1. High Precision and Complexity:

Injection molding allows for the production of parts with high precision and intricate details. The molds used in injection molding are capable of creating complex shapes, fine features, and precise dimensions. This level of precision enables the manufacturing of parts with tight tolerances, ensuring consistent quality and fit.

2. Cost-Effective Mass Production:

Injection molding is a highly efficient process suitable for large-scale production. Once the initial setup, including mold design and fabrication, is completed, the manufacturing process can be automated. Injection molding machines can produce parts rapidly and continuously, resulting in fast and cost-effective production of identical parts. The ability to produce parts in high volumes helps reduce per-unit costs, making injection molding economically advantageous for mass production.

3. Material Versatility:

Injection molding supports a wide range of thermoplastic materials, providing versatility in material selection based on the desired properties of the final part. Various types of plastics can be used in injection molding, including commodity plastics, engineering plastics, and high-performance plastics. Different materials can be chosen to achieve specific characteristics such as strength, flexibility, heat resistance, chemical resistance, or transparency.

4. Strength and Durability:

Injection molded parts can exhibit excellent strength and durability. During the injection molding process, the molten material is uniformly distributed within the mold, resulting in consistent mechanical properties throughout the part. This uniformity enhances the structural integrity of the part, making it suitable for applications that require strength and longevity.

5. Minimal Post-Processing:

Injection molded parts often require minimal post-processing. The high precision and quality achieved during the molding process reduce the need for extensive additional machining or finishing operations. The parts typically come out of the mold with the desired shape, surface finish, and dimensional accuracy, reducing time and costs associated with post-processing activities.

6. Design Flexibility:

Injection molding offers significant design flexibility. The process can accommodate complex geometries, intricate details, undercuts, thin walls, and other design features that may be challenging or costly with other manufacturing methods. Designers have the freedom to create parts with unique shapes and functional requirements. Injection molding also allows for the integration of multiple components or features into a single part, reducing assembly requirements and potential points of failure.

7. Rapid Prototyping:

Injection molding is also used for rapid prototyping. By quickly producing functional prototypes using the same process and materials as the final production parts, designers and engineers can evaluate the part’s form, fit, and function early in the development cycle. Rapid prototyping with injection molding enables faster iterations, reduces development time, and helps identify and address design issues before committing to full-scale production.

8. Environmental Considerations:

Injection molding can have environmental advantages compared to other manufacturing processes. The process generates minimal waste as the excess material can be recycled and reused. Injection molded parts also tend to be lightweight, which can contribute to energy savings during transportation and reduce the overall environmental impact.

In summary, injection molding offers several advantages for producing parts. It provides high precision and complexity, cost-effective mass production, material versatility, strength and durability, minimal post-processing requirements, design flexibility, rapid prototyping capabilities, and environmental considerations. These advantages make injection molding a highly desirable manufacturing process for a wide range of industries, enabling the production of high-quality plastic parts efficiently and economically.

China wholesaler Eruo 2 10L Diesel Engine CHINAMFG CHINAMFG 10ton Cargo Truck with 4tons Fold Arm Crane  China wholesaler Eruo 2 10L Diesel Engine CHINAMFG CHINAMFG 10ton Cargo Truck with 4tons Fold Arm Crane
editor by CX 2023-12-21

Tags:

Recent Posts